
Introduction
BDS has essentially three data egress mechanisms: Download, Provenance and Query. These are described in detail in
the following sections. The primary idea is to provide data that scientists care about in a form they can easily use and
this involves a certain amount of transition software since the data are stored in the system primarily according to
systemic (not scientific) considerations.

Download

A recapitulation of the MATLAB comments: From tables to CSV files.•
UI download •

This part is not too complicated. The primary topics to discuss here are:

Provenance
This part is under development (2/16). It concerns the use of Provenance files which enable data download and other
things.

Query
Queries are formulated in the UI and produce things like Dataset lists, Table lists and Tables. The problem we state here
is one of science utility: How do we transform a Query result that may have inconvenient attributes into something
more useful for scientists?

For this discussion we focus on Row Query results, which are tables. Examples of inconveniences: Such a table might
have row degeneracy; or the scientists may want to calculate a simple index as a new column not available in a current
level. Here we describe how to implement these sorts of 'in passing' improvements to Query results.

Let's begin with the first example where a Row Query Result (RQR) has row degeneracy: Multiple rows concern the same
entity like a chemical formula. We find this in FTICR-MS Level 1.3 queries across multiple Datasets where the same
formula will appear in more than one row. Such degenerate rows can be consolidated, for example with the following
Python script:

MS14Conso
lidate

Its input is a single table produced by BDS row query to MS 1.3, its outputs are two tables which can be described by
following pseudo database requests:

GROUP BY Formula

mean_mass, Fe, Na, Cl, P, S, O, N, H, C, Meas_m/z -> EXPECT BEING CONSTANT
* -> EXPECT SINGLE NOT MISSING VALUE

CONSOLIDATE

nrMatches = map * (\val -> if isNaN val then 0 else 1) | fold (+)
I = fold * (+) / nrMatches

ADD COLUMNS

SELECT * EXCEPT $DatasetID, $TableID, nrMatches, Index, I FROM query_result

GROUP BY $DatasetID, $TableID

samples -> filter samples (any (!isNaN)) | count
CONSOLIDATE

SELECT $DatasetID, $TableID, samples FROM query_result

A question arises: how to incorporate that kind of output modulation into BDS?

Introduce a new Type for each query target.•
Make the query structure and query engine more complex.•
Allow for user-supplied post processors.•

Three rejected ideas:

Each had merits but we settled on a fourth option, 'built-in postprocessors':

We can implement processing of ABSOLUTELY ANY complexity this way

PRO○

The admin provides system with algorithms in some standard form (as with TYPE processing), users can specify for
each of their queries and which existing post processors (if any) they want to use

•
So, bullet 4 it is.

BDS Data Egress
11 февраля 2016 г. 18:35

 Documentation Page 1

We can implement processing of ABSOLUTELY ANY complexity this way

It's relatively easy to implement

Easy to use

Set of available post-processors is fixed at any given moment of time, introduction of a new one
requires action from BDS admin

CON○

In which form should admin provide post-processors?

Do we want to be able to create complete provenances for query results like the ones we have for datasets? If so, then
the only possibility is to provide post-processors as Angara workflows (like processors for dataset) and to make query
engine utilize Angara for processing.

Rob prefers an approach that is less formal: Provide a tarball or a GitHub URL of the code / documentation attached to a
particular post-processor used. I prefer this despite its being a bit schizophrenic: On the one hand we have the
provenance machinery of Angara (Modeling Environment) so why not make use of it? On the other hand this is a sort of
Uncontrolled Zone outside of A/ME where we might anticipate the work is less formal and more experimental. It still
requires admin attention but not at the level of BDS system workflow; so I am proposing a concentric-ring model where
the central disc is the formalized A/ME processing of Levels and the outer ring is optional post-processors with less
formality and 'use at your own risk'.

• Python 2
• MATLAB
• R
• Python 3
• Scala
• Cuda
• ALGOL 58
• LISP
• 6502 Assembly Language
• HP 67 RPN
• TeX
• F#
• Pascale
• C
• BASIC
• Prolog
• FORTRAN 77
• COBOL

Post-processors can be written in the following languages, in order of implementation priority:

 Documentation Page 2

