
You can incorporate your MATLAB code into an Angara workflow with the 'run MATLAB' method. This
method applies a MATLAB function from a .ctf file (can be produced with MATLAB compiler) of ITable
objects and produces an array of ITable objects, which are the outputs of that function.

name - contains the name of corresponding table column stored as MATLAB char array•
data - contains contents of the corresponding table column stored as a vertical vector. Integer and
float columns are passed as numeric arrays, textual data is passed as cell array of char arrays

•

The 'run MATLAB' method tries to pass to the function with the name coinciding with the method's
second argument a number of arguments equal to the length of array of tables provided as the last
argument. It tries to receive from MATLAB a number of outputs provided as the third argument. Input
tables are passed as parameters into function in the same order they were added in. Each table is
transferred as an array of MATLAB structures having the following fields:

Action expects MATLAB function to return arrays of structures of the same form, with the only
difference that textual data may as well be returned as a 2D char array.

Only the transfer of numeric and textual data is supported. Trying to pass a table column with the type
different from integer, float, or string will result in this column being discarded during the preparation of
MATLAB function's arguments; trying to return from MATLAB function anything not of the form
described above will cause 'run MATLAB' method to fail.

The 'run MATLAB' action requires MATLAB Compiler Runtime v8.2 to be installed. The runtime is
available for free from MathWorks web site:
http://www.mathworks.com/products/compiler/mcr/
If you are running 64-bit Windows then install the 64-bit version of the runtime.

There's also a "run MATLABFA" method that applies MATLAB function to arrays of tables and outputs
arrays of tables. You provide arrays of tables as inputs, they are passed to MATLAB as cell arrays. The
method expects outputs in form of cell arrays as well.

Here's an example of Angara compatible MATLAB function:

The following MATLAB function takes a table with chemical substance formulae in one of its columns,
filters out the rows with incorrect or missing formulae and adds columns describing stoichiometry of the
substances.

(file: postprocess_to_10.m)

function t_out = postprocess_to_10(t_in)
%POSTPROCESS_TO_10 Filters all the records with invalid chemical formula from
the
%input table and adds columns with numbers of atoms of different
%elements contained in each formula

 %expected name of the column with formulae
 formName = 'formula';

 %considered elements
 elements = { 'C', 'H', 'N', 'O', 'S', 'P', 'Cl', 'Na', 'Fe' };

Using MATLAB Functions in ME Templates
29 июля 2015 г. 18:09

 BDS Page 1

http://www.mathworks.com/products/compiler/mcr/

 %index of the column with the formulae (to be found)
 formInd = 0;

 %total number of columns in the input table
 totalCols = numel(t_in);

 %searching for the column with formulae
 %Angara will pass input argument so that
 %t_in can be expected to be a structure array with fields 'name' and
 %'data' containing names and data of the corresponding columns
 %respectively. The code below checks that there exists a column with
 %the name 'formula' and saves its index.
 for i=1:totalCols
 if (strcmp(t_in(i).name, formName))
 formInd = i;
 break;
 end
 end

 if (formInd == 0)
 %Throw an exception if no column with formulae was found
 exception = MException('inputError:incomplete', 'The column with
chemical formulae is missing.');
 throw(exception);
 end

 %Regular expression for chemical formulae
 formRegExp = '^([A-Z][a-z]\d*|[A-Z]\d*)*$';
 %For the sake of simplicity, any single capital letter or a combination
 %of one capital letter and one small letter is considered a chemical
 %element. To be more precise one can use a RegExp like
 %^(H\d*|He\d*| ...)*$ listing all the elements considered valid for a
 %formula

 %Finding out which records contain valid formulae
 %Angara will pass input argument so that
 %t_in(formInd).data will be a vertical cell vector of char
 %arrays (e.g. { 'C10H10NO3'; 'no reference'; 'whatever' })
 mask = cellfun(@(x) ~isempty(regexp(x,formRegExp, 'once')),
t_in(formInd).data);

 %names for the columns of the output table
 % { t_in.name } will produce a horizontal cell vector with the names of
 % the columns of the input table, elements cell array was defined above
 resNames = [{ t_in.name } elements];

 %Filtered data from the input table
 filteredSources = arrayfun(@(x) t_in(x).data(mask), 1:totalCols,
'UniformOutput', false);

 %Specifically, column with the formulae
 resForm = filteredSources{formInd};

 %total number of records in the resulting table
 totalRecords = numel(resForm);

 BDS Page 2

 %Splitting formulae into substrings with element names as delimiters
 [nums, els] = cellfun(@(formula) strsplit(formula, '([A-Z][a-z]|[A-Z])',
'CollapseDelimiters', false, 'DelimiterType', 'RegularExpression'), resForm,
'UniformOutput', false);
 %Since chemical formulae begin with an element name there won't be any
 %useful information contained in first substrings (they will be empty)
 nums = cellfun(@(numstr) numstr(2:end), nums, 'UniformOutput', false);
 %Finding empty substrings among those representing numbers of atoms and
 %replacing them with '1', since, e.g. NaCl means 1 atom of sodium and 1
 %atom of chlorine
 numMasks = cellfun(@(numstr) cellfun(@(x) strcmp(x, ''), numstr), nums,
'UniformOutput', false);
 for i=1:totalRecords
 nums{i}(numMasks{i}) = repmat({'1'}, 1, sum(numMasks{i}));
 end
 %Converting arrays representing numbers of atoms to numeric ones
 nums = cellfun(@(numstr) cell2mat(cellfun(@(x) sscanf(x, '%u'), numstr,
'UniformOutput', false)), nums, 'UniformOutput', false);
 %Finding how much of each of the considered elements do formulae
 %contain
 resElements = cellfun(@(el) cellfun(@(n, e) sum(n(cellfun(@(x) strcmp(x,
el), e))), nums, els), elements, 'UniformOutput', false);

 %data for the columns of the output table
 resvals = [filteredSources resElements];

 %output structure
 t_out = struct('name', resNames, 'data', resvals);

end

To use the function in HYKL we have to compile it into a .ctf file. This has to be done on a computer that
has full MATLAB R2013b installed on it. In the MATLAB window open 'library complier app' (the app
might need to be installed separately):

 BDS Page 3

Add file with the desired function into the list of exported functions and pick the 'Generic CTF'
application type. MATLAB Compiler app will automatically find all the files necessary to compile your
function. (In our case no additional files needed). Check that the name of your application is the same as
the name of the function you expect Angara to call.

Now, click the 'Package' button and wait for the process to complete. Among other things the compiler
creates a subfolder named '.\for_redistribution_files_only' with the .ctf file we need.

 BDS Page 4

 BDS Page 5

